Fast computation of approximant bases in canonical form
نویسندگان
چکیده
In this article, we design fast algorithms for the computation of approximant bases in shifted Popov normal form. We first recall the algorithm known as PM-Basis, which will be our second fundamental engine after polynomial matrix multiplication: most other fast approximant basis algorithms basically aim at efficiently reducing the input instance to instances for which PMBasis is fast. Such reductions usually involve partial linearization techniques due to Storjohann, which have the effect of balancing the degrees and dimensions in the manipulated matrices. Following these ideas, Zhou and Labahn gave two algorithms which are faster than PM-Basis for important cases including Hermite-Padé approximation, yet only for shifts whose values are concentrated around the minimum or the maximum value. The three mentioned algorithms were designed for balanced orders and compute approximant bases that are generally not normalized. Here, we show how they can be modified to return the shifted Popov basis without impact on their cost bound; besides, we extend Zhou and Labahn’s algorithms to arbitrary orders. Furthermore, we give an algorithm which handles arbitrary shifts with one extra logarithmic factor in the cost bound compared to the above algorithms. To the best of our knowledge, this improves upon previously known algorithms for arbitrary shifts, including for particular cases such as Hermite-Padé approximation. This algorithm is based on a recent divide and conquer approach which reduces the general case to the case where information on the output degree is available. As outlined above, we solve the latter case via partial linearizations and PM-Basis.
منابع مشابه
Computing Canonical Bases of Modules of Univariate Relations
We study the computation of canonical bases of sets of univariate relations (p1, . . . ,pm ) ∈ K[x]m such that p1 f1 + · · · + pm fm = 0; here, the input elements f1, . . . , fm are from a quotient K[x]n/M, whereM is a K[x]-module of rank n given by a basis M ∈ K[x]n×n in Hermite form. We exploit the triangular shape of M to generalize a divide-and-conquer approach which originates from fast mi...
متن کاملDetermining the order of minimal realization of descriptor systems without use of the Weierstrass canonical form
A common method to determine the order of minimal realization of a continuous linear time invariant descriptor system is to decompose it into slow and fast subsystems using the Weierstrass canonical form. The Weierstrass decomposition should be avoided because it is generally an ill-conditioned problem that requires many complex calculations especially for high-dimensional systems. The present ...
متن کاملCertification of minimal approximant bases
Considering a given computational problem, a certificate is a piece of additional data that one attaches to the output in order to help verifying that this output is correct. Certificates are often used to make the verification phase significantly more efficient than the whole (re-)computation of the output. Here, we consider the minimal approximant basis problem, for which the fastest known al...
متن کاملFast Computation of Orthonormal Basis for Rbf Spaces through Krylov Space Methods
In the last years, in the setting of Radial Basis Function (RBF), the study of approximation algorithms has particularly focused on the construction of (stable) bases for the associated Hilbert spaces. One of the way of describing such spaces and their properties is the study of a particular integral operator and its spectrum. We proposed in a recent work the so-called WSVD basis, which is stri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1801.04553 شماره
صفحات -
تاریخ انتشار 2018